Das Thema „Expansion des Weltalls“ im Unterricht
Die Unterrichtseinheit verbindet Inhalte der Oberstufen-Physik (beispielsweise den Dopplereffekt, die Aufnahme und Interpretation von Spektren sowie die Darstellung und Auswertung von Daten) mit interessanten Fragen der modernen Kosmologie. Dadurch werden Inhalte des Physik-Unterrichts in einen stark motivierenden und anwendungsorientierten Kontext gestellt.
Vorkenntnisse
Im Unterricht sollte die Wellen-Eigenschaft des Lichts bereits behandelt worden sein. Speziell sollten Kenntnisse vorhanden sein, wie man Lichtspektren aufnimmt (Prisma oder optisches Gitter) und auswertet. Kenntnisse zum Dopplereffekt sind nützlich, können aber auch während der Unterrichtseinheit durch Recherche erarbeitet werden.
Einige astronomische Grundkenntnisse sollten ebenfalls vorhanden sein. So ist es hilfreich, wenn die Lernenden wissen, was die Einheit „Lichtjahr“ bedeutet, was eine Spiralgalaxie ist, und wie das Spektrum des Wasserstoff-Atoms aussieht.
Didaktische und methodische Analyse
Die Entdeckung von Edwin Hubble, dass die Rotverschiebung in den Spektren von Galaxien mit deren Entfernung von der Erde korreliert, war für die Entwicklung der modernen Kosmologie außerordentlich bedeutsam und befeuerte die Diskussion über die Beschaffenheit und Dynamik des Universums. Theoretische Folgerungen auf der Basis der Allgemeinen Relativitätstheorie konnten nun auf den experimentellen Prüfstand gestellt werden. Selbst Albert Einstein wurde veranlasst, seine Idee eines statischen Universums und die Einführung seiner kosmologischen Konstante zu überdenken. Interessant ist in diesem Zusammenhang, dass Edwin Hubble keineswegs die Idee eines expandierenden Weltalls formulierte, sondern lediglich die Verknüpfung von Entfernung und Rotverschiebung feststellte, dies aber mit einer Relativgeschwindigkeit der Objekte zueinander zu erklären versuchte.
Der eigentliche Vater des Urknall-Modells ist aber der belgische Priester und Astrophysiker Georges Lemaître, der die Ergebnisse von Hubble ganz anders interpretierte: Der Raum ist es, der sich kontinuierlich ausdehnt, die Galaxien dabei mitnimmt und so eine scheinbare Bewegung der Objekte bezüglich des Beobachters erzeugt. Die Rotverschiebung entsteht dann dadurch, dass die Lichtwellen praktisch auseinandergezogen werden, wenn der Raum sich auf ihrem Weg zu uns vergrößert hat. Dies nennt man kosmologische Rotverschiebung.
Für ein eingängiges Beispiel, das man auch gut im Unterricht vorführen kann, eignet sich ein Luftballon. Dieser wird ein wenig mit Luft gefüllt, dann werden an verschieden Stellen Punkte (Galaxien) mit einem Filzstift aufgezeichnet. Auch eine „Lichtwelle“ in Form einer aufgemalten engen Sinuskurve sollte nicht fehlen. Wenn man nun den Luftballon langsam aufbläst (der Raum vergrößert sich), erkennen die Lernenden gut, dass sich die Punkte voneinander wegbewegen, obwohl sie ihren Platz nicht verlassen. Außerdem wird die Lichtwelle auseinandergezogen, was besagter kosmologischer Rotverschiebung entspricht.
Die Deutung der Rotverschiebung als Dopplereffekt ist dennoch akzeptabel für nicht zu weit entfernte Galaxien, da der Wert von H0 dann noch als konstant angesehen werden kann. Allerdings muss man sich bei dieser Deutung darüber im Klaren sein, dass man dann der Galaxie eine Geschwindigkeit zu einem Zeitpunkt zuordnet, als das Licht von ihr ausging. Wird die Rotverschiebung der Galaxie hingegen kosmologisch gedeutet, können wir daran ablesen, in welchem Maße sich das Universum seither ausgedehnt hat.
Die Unterrichtseinheit „Die Expansion des Weltalls“ orientiert sich in ihrer Struktur an dem wissenschaftshistorischen Weg: So wird zunächst der Dopplereffekt als nützliches Hilfsmittel zur Messung von Geschwindigkeiten im Weltall behandelt. Die Auswertung von Galaxienspektren führt dann unter Verwendung der Dopplerformel zu einem Entfernung-Geschwindigkeit-Diagramm, so wie es Hubble seinerzeit erstellt hatte. Daraus lässt sich dann das Hubble-Gesetz herleiten und aus der Steigung der Regressionsgerade die Hubble-Konstante bestimmen. Dass die Geschwindigkeit, die aus der Rotverschiebung mithilfe der Dopplerformel gewonnen wurde, eher als scheinbare Bewegung verstanden werden sollte, wird schließlich im dritten Arbeitsblatt thematisiert, wenn die Idee des sich aufblähenden Raumes und das Urknall-Modell zur Sprache kommen.
Für die Erstellung des Hubble-Diagramms stehen die Spektren von 14 Galaxien zur Verfügung. Diese befinden sich in unserer kosmischen Nachbarschaft, also in einem Raumbereich, in dem die Rotverschiebung deutlich unter 10 % (z=0,1) liegt. Dann nämlich darf man davon ausgehen, dass die Hubble-Konstante wirklich eine Konstante ist. Für weiter entfernte Objekte gilt das nicht mehr, da ihr Licht aus einer Zeit stammt, als die Ausdehnungsrate des Weltalls einen anderen Wert hatte als jetzt. Man weiß inzwischen, das die Expansionsgeschwindigkeit sich im Laufe der Jahrmilliarden verändert hat und die Hubble-Konstante daher zeitabhängig ist (also eher ein Hubble-Parameter ist).
Es ist ratsam, dass die Lernenden die 14 Galaxienspektren arbeitsteilig auswerten und ihre Ergebnisse anschließend in einer Tabelle im Plenum eintragen. Die Auswertung erfolgt sinnvollerweise mithilfe eines Tabellenkalkulationsprogramms. Achten Sie darauf, dass die Lernenden eine Gerade als Trendkurve wählen, die durch den Ursprung geht. Die Lernenden werden feststellen, dass die Streuung der Punkte um diese Gerade recht groß ist. Dies dient als willkommener Anlass, im Plenum die Gründe zu besprechen. Hier sollte vor allem kurz auf die Problematik der Entfernungsmessung von Galaxien eingegangen werden.
Der Streit um den Wert der Hubble-Konstanten ist übrigens in der Wissenschaft zurzeit in vollem Gange. Erstaunlicherweise haben gänzlich verschiedene und voneinander unabhängige Methoden zu unterschiedlichen Werten für H0 geführt, wobei sich die Fehlergrenzen der Ergebnisse kaum überlappen. Bisher konnte niemand schlüssig erklären, woher diese Unterschiede kommen. Das Thema dieser Unterrichtsreihe streift also ein brandaktuelles Thema der modernen Astrophysik.