Didaktisch-methodischer Kommentar
Schwarze Löcher – Rätselhafte Phänomene in den Tiefen des Universums
Schwarze Löcher gehören noch immer zu den größten Rätseln des Universums, wenngleich ihre Existenz mit weltweit verbundenen Teleskopen immer besser nachgewiesen werden kann – wie etwa im Jahr 2019 durch eine radioteleskopische Aufnahme des mit 6,6 Milliarden Sonnenmassen gigantischen Schwarzen Loches M87* im Zentrum der Galaxie M87.
Man weiß heute, dass Schwarze Löcher aus dem Tod eines Riesensterns entstehen können. Man vermutet Milliarden davon im Universum und es stellen sich Fragen: Was passiert genau in den Schwarzen Löchern? Wieviel Materie können Schwarze Löcher verschlingen? Wird unser Universum eines Tages komplett von Schwarzen Löchern verschlungen? Haben Schwarze Löcher Auswirkungen auf unser irdisches Leben? Wie verändern Schwarze Löcher das Universum? Handelt es sich bei allen dunklen Himmelskörpern um Schwarze Löcher?
Neue Theorien tauchen auf, die mit naturwissenschaftlichen Methoden untersucht werden müssen, ob sie denn schlüssig sind und somit einen weiteren Schritt nach vorne bedeuten oder wieder verworfen werden müssen. Undurchschaubare Schwarze Löcher und ihre Wirkungen auf Raum und Zeit werden noch lange Ansporn sein für kreative Wissenschaftler und ihren Forschungsdrang!
Vorkenntnisse
Wichtig für ein grobes Verständnis sind das Newton‘sche Gravitationsgesetz sowie die Kepler´schen Gesetze. Beide sollten im Rahmen des gymnasialen Physikunterrichts hinreichend besprochen sein, damit zum einen die mathematisch gut nachvollziehbaren Berechnungen zum Ereignishorizont und dem Schwarzschild-Radius durchgeführt werden können und zum anderen die daraus resultierenden Berechnungen zur Größe und Masse von Schwarzen Löchern.
Didaktische und methodische Analyse
Schwarze Löcher waren bis in die späten 1960er Jahre nur für Mathematiker und theoretische Physiker von Bedeutung, weil kein Weg zu ihrer Beobachtung vorstellbar schien. Zudem hielt man es für unwahrscheinlich, dass es Objekte mit einer derart unvorstellbar großen Dichte geben könnte. Auch der Name „black hole“ oder „Schwarzes Loch“ wurde erst Ende der 1960er Jahre geprägt.
Zu einem Umdenken kam es, als erste astronomische Objekte im Röntgenlicht sowie ein extremer Strahlungsausstoß sogenannter Quasare nachgewiesen werden konnte. Der britische Physiker Stephen Hawking (1942–2018) konnte in den 1980er Jahren zeigen, dass in der Umgebung verschiedener Schwarzer Löcher physikalische Effekte auftreten konnten, bei denen Strahlung nach außen ab-gegeben werden kann – völlig widersprüchlich zum ursprünglichen Bild des Schwarzen Loches.
Bis in die 1990er Jahre konnten einige Kandidaten für stellare Schwarze Löcher von nur wenigen Sonnenmassen in Doppelsternsystemen gefunden werden – ein Nachweis für supermassive Schwarze Löcher im Zentrum vieler Galaxien stand noch aus. Dies war der Auslöser für die Astrophysiker Reinhard Genzel und Andrea Ghez, das Zentrum unserer Milchstraße genau zu untersuchen. In jahrelangen Forschungen fanden sie – übereinstimmend – die Bahnen mehrerer Sterne, die sich auf elliptischen Bahnen um ein Zentrum drehen.
Als besonders interessant stellte sich der innerste Stern, mit S2 bezeichnet, heraus. Er brauchte nur 16 Jahre für einen Umlauf; die von den Forschenden beobachteten Bahnparameter ließen nur einen Schluss zu – im Zentrum unserer Milchstraße muss sich ein supermassereiches Schwarzes Loch (Sagittarius A*) mit einer Masse von rund vier Millionen Sonnenmassen befinden. Der mithilfe von weltweit zusammengeschlossenen riesigen Teleskopen gefundene Nachweis ist ein Meilenstein der Astrophysik und hat durch die Verleihung des Nobelpreises für Physik im Jahr 2020 für weltweites Aufsehen gesorgt.
Noch nicht völlig eindeutig ist, welche Rolle die Schwarzen Löcher in der Kosmologie einnehmen. Ein großes Problem ist, wie Schwarze Löcher so schnell entstehen und in so kurzer Zeit solche gigantischen Materiemengen ansammeln konnten. Sind die supermassereichen Schwarzen Löcher vielleicht die „Geburtshelfer“ für Galaxien? Viele Fragen, die auf Antworten warten.
Die hinter all diesen Fragen und bisherigen Erkenntnissen steckende Physik ist aufgrund der dafür notwendigen Mathematik äußerst kompliziert und im gymnasialen Unterricht nicht anwendbar. Dennoch ist die Allgemeine Relativitätstheorie eine Theorie der klassischen Physik und macht es möglich, mit Gesetzmäßigkeiten wie dem Gravitationsgesetz von Newton und den Kepler‘schen Gesetzen Berechnungen durchzuführen und damit ein grobes, aber ausreichendes Verständnis für den Aufbau und die Funktion Schwarzer Löcher zu erhalten.
Zudem können durch relativ einfache Gleichungen die Schwarzschild-Radien für die Sonne und die Erde berechnen werden – die geringen Beträge zeigen uns, welche unvorstellbaren Kräfte herrschen müssten, damit auch diese beiden Himmelskörper zu Schwarzen Löchern zusammengekrümmt würden. Am Beispiel von Sagittarius A* kann man schließlich nachvollziehen, welche Größen und Massen sich für Schwarze Löcher ergeben können, wenn man das Sonnensystem verlässt und in das 26.000 Lichtjahre entfernte Zentrum der Milchstraße vorstößt.
Die genannten Beispiele und Berechnungen zeigen den Lernenden unter anderem, um welche Größenordnungen es geht, wenn man vom Universum spricht. Schülerinnen und Schüler sollen mit dieser Unterrichtseinheit zu Schwarzen Löchern auch animiert werden, darüber nachzudenken, welche Rolle wir Menschen auf unserer Erde in diesem gigantischen Kosmos spielen.